Robust dimension reduction based on canonical correlation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimension Reduction Based on Canonical Correlation

Dimension reduction is helpful and often necessary in exploring nonlinear or nonparametric regression structures with a large number of predictors. We consider using the canonical variables from the design space whose correlations with a spline basis in the response space are significant. The method can be viewed as a variant of sliced inverse regression (SIR) with simple slicing replaced by Bs...

متن کامل

Canonical kernel dimension reduction

A new kernel dimension reduction (KDR) method based on the gradient space of canonical functions is proposed for sufficient dimension reduction (SDR). Similar to existing KDR methods, this new method achieves SDR for arbitrary distributions, but with more flexibility and improved computational efficiency. The choice of loss function in cross-validation is discussed, and a two-stage screening pr...

متن کامل

Analysis of Correlation Based Dimension Reduction Methods

Dimension reduction is an important topic in data mining and machine learning. Especially dimension reduction combined with feature fusion is an effective preprocessing step when the data are described by multiple feature sets. Canonical Correlation Analysis (CCA) and Discriminative Canonical Correlation Analysis (DCCA) are feature fusion methods based on correlation. However, they are differen...

متن کامل

A Novel Dimension Reduction Technique based on Correlation Coefficient

In this paper, a novel simple dimension reduction technique for classification is proposed based on correlation coefficient. Existing dimension reduction techniques like LDA is known for capturing the most discriminant features of the data in the projected space while PCA is known for preservin g the most descriptive ones after projection. Our novel technique integrates correlation coefficient ...

متن کامل

Robust Methods for Canonical Correlation Analysis

Canonical correlation analysis studies associations between two sets of random variables. Its standard computation is based on sample covariance matrices, which are however very sensitive to outlying observations. In this note we introduce, discuss and compare four different ways for performing a robust canonical correlation analysis. One method uses robust estimators of the involved covariance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2009

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2008.04.003